Folding pathways of a helix-turn-helix model protein

نویسندگان

  • D. Hoffmann
  • E. W. Knapp
چکیده

A small model polypeptide represented in atomic detail is folded using Monte Carlo dynamics. The polypeptide is designed to have a native conformation similar to the central part of the helix-turn-helix protein ROP. Starting from a β-strand conformation or two different loop conformations of the protein glutamine synthetase, six trajectories are generated using the so-called window move in dihedral angle space. This move changes conformations locally and leads to realistic, quasi-continuously evolving trajectories. Four of the six trajectories end in stable native-like conformations. Their folding pathways show a fast initial development of a helix-bend-helix motif, followed by a dynamic behaviour predicted by the diffusion-collision model of Karplus and Weaver. The phenomenology of the pathways is consistent with experimental results. ∗Present address: German National Research Center for Information Technology, GMD-SCAI, Schloss Birlinghoven, D-53754 Sankt Augustin, Germany; e-mail [email protected]; URL http://www.gmd.de/SCAI/people/hoffmann.html

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physicochemical Position-Dependent Properties in the Protein Secondary Structures

Background: Establishing theories for designing arbitrary protein structures is complicated and depends on understanding the principles for protein folding, which is affected by applied features. Computer algorithms can reach high precision and stability in computationally designing enzymes and binders by applying informative features obtained from natural structures. Methods: In this study, a ...

متن کامل

Testing protein-folding simulations by experiment: B domain of protein A.

We have assessed the published predictions of the pathway of folding of the B domain of protein A, the pathway most studied by computer simulation. We analyzed the transition state for folding of the three-helix bundle protein, by using experimental Phi values on some 70 suitable mutants. Surprisingly, the third helix, which has the most stable alpha-helical structure as a peptide fragment, is ...

متن کامل

Gyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations

The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...

متن کامل

A MODEL FOR THE BASIC HELIX- LOOPHELIX MOTIF AND ITS SEQUENCE SPECIFIC RECOGNITION OF DNA

A three dimensional model of the basic Helix-Loop-Helix motif and its sequence specific recognition of DNA is described. The basic-helix I is modeled as a continuous ?-helix because no ?-helix breaking residue is found between the basic region and the first helix. When the basic region of the two peptide monomers are aligned in the successive major groove of the cognate DNA, the hydrophobi...

متن کامل

A theoretical study on quadrupole coupling parameters of HRPII Protein modeled as 310-helix & α-helix structures

A fragment of Histidine rich protein II (HRP II 215-236) was investigated by 14N and 17O electric field gradient, EFG, tensor calculations using DFT. This study is intended to explore the differences between 310-helix and α-helix of HRPII both in the gas phase and in solution. To achieve the aims, the 17O and 14N NQR parameters of a fragment of HRPII (215-236) for both structures are calculated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997